MATHEMATISCH CENTRUM 2º BOERHAAVESTRAAT 49 A M S T E R D A M STATISTISCHE AFDELING

Leiding: Prof. Dr D. van Dantzig Chef van de Statistische Consultatie: Prof. Dr J. Hemelrijk

Report S 188 (VP 5)

Prepublication

Maximum likelihood estimation of ordered probabilities

bу

Constance van Eeden

January 1956

1. Introduction

The problem considered in this report concerns k ($k \ge 2$) independent series of independent trials, each trial resulting in a success or a failure. The i-th series consists of n_i trials with $\underline{\alpha}_i^{(1)}$ successes and $\underline{b}_i = n_i - \underline{\alpha}_i$ failures; π_i is the (unknown) probability of a success for each trial of the i-th series ($i=1,2,\ldots,k$) and π_i,π_2,\ldots,π_k satisfy the inequalities

$$(1.1) \qquad \qquad \pi_1 \leq \pi_2 \leq \ldots \leq \pi_k.$$

In section 2 a method will be described by means of which the maximum likelihood estimates may be found; in section 3 a generalization of the problem will be considered.

2. The maximum likelihood estimates of $\pi_1, \pi_2, \dots, \pi_k$

2.1. The likelihood function

The maximum likelihood estimates of $\pi_1, \pi_2, \dots, \pi_k$ are those values of $\beta_1, \beta_2, \dots, \beta_k$ which maximize

(2.1.1)
$$L = L(p_1, p_2, ..., p_k) \stackrel{\text{def}}{=} \sum_{i=1}^{k} \{a_i \log p_i + (n_i - a_i) \log q_i\}$$
 (q:=1-pi)

in the domain

(2.1.2)
$$D: \begin{cases} p_1 \leq p_2 \leq \ldots \leq p_k, \\ 0 \leq p_i \leq 1 \quad (i = 1, 2, \ldots, k). \end{cases}$$

In this section $\$ will, unless explicitely stated otherwise, only be considered in this domain $\$; the maximum likelihood estimates will be denoted by $\$ V, $\$ V $_{k}$, and

(2.1.3)
$$L_i = L_i(p_i) \stackrel{\text{def}}{=} a_i \lg p_i + (m_i - a_i) \lg q_i \quad (i = 1, 2, ..., k).$$

2.2. The estimates for the case that $\frac{\alpha_i}{n_i} \le \frac{\alpha_{i+1}}{n_{i+1}}$ for each i = 1, 2, ..., k-1

Theorem I: If $\frac{a_i}{n_i} \le \frac{a_{i+1}}{n_{i+1}}$ for each i = 1, 2, ..., k-1 then $(2.2.1) \qquad \forall_i = \frac{a_i}{n_i} \quad (i = 1, 2, ..., k).$

<u>Proof:</u> This follows immediately from the fact that the maximum of L in D coincides with the maximum of L in the domain: $0 \le p_i \le 1$ (i = 1, 2, ..., k) if $\frac{\alpha_i}{m_i} \le \frac{\alpha_{i+1}}{m_{i+1}}$ for each i = 1, 2, ..., k-1.

?) Random variables will be distinguished from numbers (e.g. from the value they take in an experiment) by underlining their symbols.

2.3. The estimates for the case that $\frac{\alpha_i}{m} > \frac{\alpha_{i+1}}{m}$ for at least one value of i = 1, 2, ..., k-1

In this section the following theorem will be proved.

Theorem II:

(2.3.1)
$$V_{i} = V_{i+1} \quad \text{for each i with } \frac{\alpha_{i}}{n_{i}} > \frac{\alpha_{i+1}}{n_{i+1}}.$$

Further a method will be described by means of which the estimates may be found.

For the proofs we need the following lemma and theorem.

Lemma I:

(2.3.2)
$$L_{i}(p_{i}) > L_{i}(p_{i})$$

if (þ., þ.) is a pair of values satisfying

$$(2.3.3) o \leq p_i < p_i' \leq \frac{a_i}{n_i} or \frac{a_i}{n_i} \leq p_i' < p_i \leq 1.$$

Proof:

From (2.1.3) follows

$$\frac{dL_i}{dp_i} = \frac{a_i - n_i p_i}{p_i q_i}.$$

Therefore

(2.3.5)
$$\frac{dL_{i}}{d\rho_{i}} \begin{cases} > 0 & \text{if } \rho_{i} < \frac{\alpha_{i}}{m_{i}}, \\ = 0 & \text{if } \rho_{i} = \frac{\alpha_{i}}{m_{i}}, \\ < 0 & \text{if } \rho_{i} > \frac{\alpha_{i}}{m_{i}}. \end{cases}$$

and lemma I follows from (2.3.5).

Theorem III: If $\frac{\alpha_i}{n_i} > \frac{\alpha_{i+1}}{n_{i+1}}$ for any i and if p_i, p_2, \dots, p_K is any set in $\mathbb D$ with

$$(2.3.6)$$
 $p_i < p_{i+1}$

then a number b exists with

(2.3.7)
$$p_i \le p \le p_{i+1}$$

which, substituted into $L(p_1, p_2, \ldots, p_k)$ for p_i and p_{i+1} , increases L.

Proof:

A number β which, substituted for β_i and β_{i+i} in L , increases L must satisfy the relation

(2.3.8)
$$L_{i}(p) + L_{i+1}(p) > L_{i}(p_{i}) + L_{i+1}(p_{i+1}).$$

Further the following cases may be distinguished

1. $p_i < p_{i+1} \le \frac{\alpha_i}{n_i}$; in that case we take $p = p_{i+1}$, satisfying (2.3.7).

According to lemma I we then have

$$(2.3.9) \qquad L_{i}(p) > L_{i}(p_{i})$$

and b being equal to bit

(2.3.10)
$$L_{i+1}(p) = L_{i+1}(p_{i+1}).$$

(2.3.8) then follows from (2.3.9) and (2.3.10)

- 2. $\frac{\alpha_i}{n_i} \le p_i < p_{i+1}$; in that case take $p = p_i$. In the same way as in case 1 it may be proved that this number p satisfies (2.3.7) and (2.3.8).
- $\frac{3}{n_i} < \frac{\alpha_i}{n_i} < p_{i+1}$; then if we take $p = \frac{\alpha_i}{n_i}$, p satisfies (2.3.7) and

(2.3.11)
$$p_i$$

From lemma I and (2.3.11) then follows

(2.3.12)
$$L_{i}(p) > L_{i}(p_{i}).$$

Further **b** satisfies

and from lemma I and (2.3.13) follows

$$(2.3.14) \qquad \qquad L_{i+1}(p) > L_{i+1}(p_{i+1}).$$

(2.3.8) then follows from (2.3.12) and (2.3.14).

Further it will be clear that if p_1, p_2, \ldots, p_k is a set in D and p a number satisfying (2.3.7) then $p_1, \ldots, p_{i-1}, p_i, p_i, p_{i+2}, \ldots, p_k$ is also a set in D . Therefore from theorem III follows

Theorem TV: If $\frac{a_i}{m_i} > \frac{\alpha_{i+1}}{m_{i+1}}$ for i=i, then the maximum likelihood estimates of $\pi_1, \ldots, \pi_{i_1}, \pi_{i_1+2}, \ldots, \pi_k$ are those values of $p_1, \ldots, p_{i_1}, p_{i_1+2}, \ldots, p_k$ which maximize

where

$$\begin{array}{c}
\alpha_{i}' = \alpha_{i} \\
(2.3.16)
\end{array}$$

$$\begin{array}{c}
\alpha_{i_{1}}' = \alpha_{i_{1}} + \alpha_{i_{1}+1} \\
\alpha_{i_{2}}' = \alpha_{i_{1}} + \alpha_{i_{1}+1}
\end{array}$$

$$\begin{array}{c}
\alpha_{i_{1}}' = \alpha_{i_{1}} + \alpha_{i_{1}+1} \\
\alpha_{i_{2}}' = \alpha_{i_{1}} + \alpha_{i_{2}+1}
\end{array}$$

in the domain

(2.3.17)
$$D': \begin{cases} p_1 \leq \ldots \leq p_{i_1} \leq p_{i_1+2} \leq \ldots \leq p_{k_1}, \\ 0 \leq p_i \leq 1 \quad (i = 1, \ldots, i_1, i_1 + 2, \ldots, k). \end{cases}$$

In this way the problem is reduced to the case of k-1 series of trials and may then be solved by means of theorem I or reduced to the case of k-2 series of trials by means of theorem IV. This procedure is necessarily finite, k being finite, Therefore it leads to a unique maximum for L.

Theorem II then follows from this uniqueness and the foregoing theorems.

2.4. Example

The procedure described in section 2.3 may be illustrated by means of the following example.

Suppose k=4 and

Suppose
$$k=4$$
 and

$$\begin{pmatrix}
i & 1 & 2 & 3 & 4 \\
a_i & 4 & 3 & 10 & 8 \\
m_i & 10 & 5 & 30 & 15 \\
\frac{a_i}{m_i} & 0.4 & 0.6 & 0.33 & 0.53.
\end{pmatrix}$$

From (2.4.1) and theorem II follows

$$(2.4.2)$$
 $V_2 = V_3.$

The problem is then reduced to the case of k-1=3 series of trials with (cf. theorem IV):

From (2.4.3) and theorem II follows

$$(2.4.4)$$
 $V_1 = V_2$,

which reduces the problem to the case k-2=2 series of trials with

$$\begin{cases}
\dot{a} & 1 & 4 \\
a_{i}^{"} & 17 & 8 \\
n_{i}^{"} & 45 & 15 \\
\frac{a_{i}^{"}}{n_{i}^{"}} & 0.38 & 0.53.
\end{cases}$$
There form the same T and (0.45) for 3.7

Then from theorem I and (2.4.5) follows

$$(2.4.6)$$
 $V_{1} = 0.58$, $V_{4} = 0.53$

and from (2.4.2), (2.4.4) and (2.4.6)

$$(2.4.7)$$
 $V_1 = V_2 = V_3 = 0.38$, $V_4 = 0.53$.

3. A generalization of the problem

The problem treated in the foregoing sections may be generalized as follows:

Suppose the probabilities $\pi_1, \pi_2, \dots, \pi_k$ satisfy the inequalities

(3.2)
$$\begin{cases} \alpha_{i,j} = -\alpha_{j,i}, \\ \alpha_{i,j} = 0 \end{cases}$$
 for m_0 pairs of values (i,j) with $i < j$,
$$\alpha_{i,j} = 1$$
 for m_0 pairs of values (i,j) with $i < j$.

$$(3.3) m_0 + m_1 = {k \choose 2}$$

and, if i < l < j then

$$(3.4) \qquad \alpha_{i,j} = 1 \quad \text{if} \qquad \alpha_{i,\ell} = \alpha_{\ell,j} = 1.$$

If $m_{1}=0$ then no restriction is imposed on $\pi_{1},\pi_{2},\ldots,\pi_{k}$ and it is well known that in this case the maximum likelihood estimate of π_i is: $\frac{\alpha_i}{m_i}$ (i=1,2,...k). Further, if $m_0=0$ then (3.1) is identical with: $\pi_{\text{\tiny I}} \leq \pi_{\text{\tiny 2}} \leq \ldots \leq \pi_{\text{\tiny K}}$ and this case has been considered in the foregoing sections. Therefore we suppose

$$(3.5) \qquad \begin{cases} m_1 \ge 1, \\ m_2 \ge 1. \end{cases}$$

Then from (3.3) and (3.5) it follows that

$$(3.6) k \ge 3.$$

In this report only the case k=3 will be considered; the maximum likelihood estimates will be denoted by \vee_1 , \vee_2 , \vee_3 and the domain

(3.7)
$$\begin{cases} \alpha_{i,j} (p_i - p_j) \leq 0 \\ 0 \leq p_i \leq 1 \end{cases}$$

will be denoted by D ..

The following cases may be distinguished (cf. (3.3) and (3.5)).

(3.8)
$$\begin{cases} 1. & m_1 = 1, m_2 = 2, \\ 2. & m_1 = 2, m_2 = 1. \end{cases}$$

In case (3.8.1) we may suppose, without any loss of generality

$$(3.9) \alpha_{1,2} = \alpha_{1,3} = 0, \ \alpha_{2,3} = 1.$$

It will be clear that in this case

$$(3.10) \qquad \qquad V_1 = \frac{\alpha_1}{m_1}$$

and that the estimates of π_2 and π_3 may be found by means of the procedure described in section 2.

In the case (3.8.2) we may suppose without any loss of generality

$$(3.11) \qquad \alpha_{1,2} = \alpha_{1,3} = 1 , \quad \alpha_{2,3} = 0$$

and

$$\frac{\alpha_{\lambda}}{n_{\lambda}} \leq \frac{\alpha_{\lambda}}{n_{\lambda}}.$$

Theorem V: If k = 3 and (3.11) and (3.12) are satisfied and if þ., þ., þ. is a set in D. with

$$(3.13)$$
 $p_2 > p_3$

then a number
$$p$$
 exists with

$$\begin{cases}
1. & p_2 \ge p \ge p_3, \\
2. & L_2(p) + L_3(p) > L_2(p_2) + L_3(p_3).
\end{cases}$$

Proof: The proof is analogous to the proof of theorem IV. Here the following cases may be distinguished

1.
$$p_2 > p_3 \ge \frac{\alpha_2}{n_3}$$
; then take $p = p_3$.

2.
$$\frac{\alpha_2}{n_2} \ge p_2 > p_3$$
; then take $p = p_2$,

2.
$$\frac{\alpha_2}{m_2} \ge p_2 > p_3$$
; then take $p = p_2$,
3. $p_2 > \frac{\alpha_2}{m_2} > p_3$; then take $p = \frac{\alpha_2}{m_2}$.

Further it will be clear that if p_1, p_2, p_3 is a set in \mathfrak{D} , with $p_2 > p_2$ then, for each number p satisfying (3.14.1), $p_1, p_2 > p_3$ also a set in $\mathfrak{D}_{\text{\tiny L}}$. Therefore it follows from theorem V that

Theorem VI: If k=3 and (3.11) and (3.12) are satisfied then the maximum likelihood estimates of π_1, π_2, π_3 are the values of p_1, p_2, p_3 which maximize L in the domain

$$(3.15)$$
 $p_1 \le p_2 \le p_3.$

In this way the problem may, for k=3, be reduced to the case treated in section 2.

This may be illustrated by means of the following example.

Suppose k=3.

$$\begin{pmatrix}
\dot{a} & 1 & 2 & 3 \\
a_{i} & 13 & 12 & 6 \\
n_{i} & 20 & 25 & 15 \\
\frac{a_{i}}{m_{i}} & 0,65 & 0,48 & 0,4
\end{pmatrix}$$

$$(3.17)$$
 $\alpha_{1,3} = \alpha_{2,5} = 1$, $\alpha_{1,2} = 0$.

(3.18)
$$\begin{cases} \pi_{1}^{'} \stackrel{\text{def}}{=} 1 - \pi_{3}, \\ \pi_{2}^{'} \stackrel{\text{def}}{=} 1 - \pi_{1}, \\ \pi_{3}^{'} \stackrel{\text{def}}{=} 1 - \pi_{2}, \end{cases}$$

then the problem is reduced to the case of 3 series of trials

$$(3.19) \begin{cases} \dot{i} & 1 & 2 & 3 \\ \dot{a_i} & 9 & 7 & 13 \\ \dot{m_i} & 15 & 20 & 25 \\ \frac{\dot{a_i}}{\dot{m_i}} & 0.6 & 0.35 & 0.52 \end{cases}$$
and

(3.20)
$$\alpha'_{1,2} = \alpha'_{1,3} = 1$$
, $\alpha'_{2,3} = 0$.

For these three series of trials (3.11) and (3.12) are satisfied and therefore the estimates of π_i', π_2', π_3' (denoted by v_i', v_2', v_3') may be found by means of theorem VI. This leads to

$$(3.21)$$
 $V'_1 = V'_2 = 0,46$, $V'_3 = 0,52$

and from (3.18) and (3.21) follows

$$(3.22) V_1 = V_2 = 0,54, V_2 = 0,48.$$

The investigation of cases with k>3 is in progress.